Fast Graph Simplification for Interleaved-Dyck Reachability

Author:

Li Yuanbo1ORCID,Zhang Qirun1,Reps Thomas2

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

2. University of Wisconsin-Madison, Madison, WI

Abstract

Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck language reachability ( InterDyck -reachability) is a fundamental framework to express a wide variety of program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically leverage one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependencies, such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck -reachability framework should model multiple Dyck languages simultaneously . Unfortunately, precise InterDyck -reachability is undecidable. Any practical solution must over-approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the InterDyck -reachability formulation. This article offers a new perspective on improving both the precision and the scalability of InterDyck -reachability: we aim at simplifying the underlying input graph G . Our key insight is based on the observation that if an edge is not contributing to any InterDyck -paths, we can safely eliminate it from G . Our technique is orthogonal to the InterDyck -reachability formulation and can serve as a pre-processing step with any over-approximating approach for InterDyck -reachability. We have applied our graph simplification algorithm to pre-processing the graphs from a recent InterDyck -reachability-based taint analysis for Android. Our evaluation of three popular InterDyck -reachability algorithms yields promising results. In particular, our graph-simplification method improves both the scalability and precision of all three InterDyck -reachability algorithms, sometimes dramatically.

Funder

Rajiv and Ritu Batra

Facebook under a Probability and Programming Research Award

Amazon under an Amazon Research Award

United States National Science Foundation

Defense Advanced Research Projects Agency

ONR

Facebook Graduate Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two Birds with One Stone: Multi-Derivation for Fast Context-Free Language Reachability Analysis;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

2. Context Sensitivity without Contexts: A Cut-Shortcut Approach to Fast and Precise Pointer Analysis;Proceedings of the ACM on Programming Languages;2023-06-06

3. Taming transitive redundancy for context-free language reachability;Proceedings of the ACM on Programming Languages;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3