Abstract
Algorithms with automatic error control are described for the solution of Laplace's equation on both interior and exterior regions, with both Dirichlet and Neumann boundary conditions. The algorithms are based on standard reformulations of each boundary value problem as a boundary integral equation of the second kind. The Nyström method is used to solve the integral equations, and convergence of arbitrary high order is observed when the boundary data are analytic. The Kelvin transformation is introduced to allow a simple conversion between internal and external problems. Two Fortran program implementations, DRCHLT and NEUMAN, are defined, analyzed, and illustrated.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Reference9 articles.
1. ANDERSON E. BAI Z. BISCHOF C. DEMMEL J. DONGARRA J. DuCRoz J. GREENBAUM A. HAMMARLING S. MCKENNEY A. OSTROUCHOV S. AND SORENSON D. 1992. LAPACK Users' Guide. SIAM Publications Philadelphia. ANDERSON E. BAI Z. BISCHOF C. DEMMEL J. DONGARRA J. DuCRoz J. GREENBAUM A. HAMMARLING S. MCKENNEY A. OSTROUCHOV S. AND SORENSON D. 1992. LAPACK Users' Guide. SIAM Publications Philadelphia.
2. ATKINSON K. 1976. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. SIAM Pub. ATKINSON K. 1976. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. SIAM Pub.
3. ATKINSON K. 1989. An Introduction to Numerical Analysis 2nd ed. John Wiley and Sons New York. ATKINSON K. 1989. An Introduction to Numerical Analysis 2nd ed. John Wiley and Sons New York.
4. ATKINSON K. 1997. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press Cambridge UK. ATKINSON K. 1997. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press Cambridge UK.
5. KRESS R. 1989. Linear Integral Equations. Springer Berlin. KRESS R. 1989. Linear Integral Equations. Springer Berlin.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献