Proactive Defense for Internet-of-things: Moving Target Defense With Cyberdeception

Author:

Ge Mengmeng1ORCID,Cho Jin-Hee2,Kim Dongseong3,Dixit Gaurav2,Chen Ing-Ray2

Affiliation:

1. RMIT University, Melbourne, Victoria, Australia

2. Virginia Polytechnic Institute and State University, Falls Church, VA, USA

3. University of Queensland, St Lucia, Brisbane, Queensland, Australia

Abstract

Resource constrained Internet-of-Things (IoT) devices are highly likely to be compromised by attackers, because strong security protections may not be suitable to be deployed. This requires an alternative approach to protect vulnerable components in IoT networks. In this article, we propose an integrated defense technique to achieve intrusion prevention by leveraging cyberdeception (i.e., a decoy system) and moving target defense (i.e., network topology shuffling). We evaluate the effectiveness and efficiency of our proposed technique analytically based on a graphical security model in a software-defined networking (SDN)-based IoT network. We develop four strategies (i.e., fixed/random and adaptive/hybrid) to address “when” to perform network topology shuffling and three strategies (i.e., genetic algorithm/decoy attack path-based optimization/random) to address “how” to perform network topology shuffling on a decoy-populated IoT network, and we analyze which strategy can best achieve a system goal, such as prolonging the system lifetime, maximizing deception effectiveness, maximizing service availability, or minimizing defense cost. We demonstrated that a software-defined IoT network running our intrusion prevention technique at the optimal parameter setting prolongs system lifetime, increases attack complexity of compromising critical nodes, and maintains superior service availability compared with a counterpart IoT network without running our intrusion prevention technique. Further, when given a single goal or a multi-objective goal (e.g., maximizing the system lifetime and service availability while minimizing the defense cost) as input, the best combination of “when” and “how” strategies is identified for executing our proposed technique under which the specified goal can be best achieved.

Funder

Army Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT-PRIDS: Leveraging packet representations for intrusion detection in IoT networks;Computers & Security;2024-11

2. MTFS: a Moving Target Defense-Enabled File System for Malware Mitigation;2024 IEEE 49th Conference on Local Computer Networks (LCN);2024-10-08

3. BSDN-HMTD: A blockchain supported SDN framework for detecting DDoS attacks using deep learning method;Egyptian Informatics Journal;2024-09

4. CGAN-based cyber deception framework against reconnaissance attacks in ICS;Computer Networks;2024-09

5. A Review of the Weaponization of IoT: Security Threats and Countermeasures;2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3