Context-bounded verification of thread pools

Author:

Baumann Pascal1ORCID,Majumdar Rupak1ORCID,Thinniyam Ramanathan S.1ORCID,Zetzsche Georg1ORCID

Affiliation:

1. MPI-SWS, Germany

Abstract

Thread pooling is a common programming idiom in which a fixed set of worker threads are maintained to execute tasks concurrently. The workers repeatedly pick tasks and execute them to completion. Each task is sequential, with possibly recursive code, and tasks communicate over shared memory. Executing a task can lead to more new tasks being spawned. We consider the safety verification problem for thread-pooled programs. We parameterize the problem with two parameters: the size of the thread pool as well as the number of context switches for each task. The size of the thread pool determines the number of workers running concurrently. The number of context switches determines how many times a worker can be swapped out while executing a single task---like many verification problems for multithreaded recursive programs, the context bounding is important for decidability. We show that the safety verification problem for thread-pooled, context-bounded, Boolean programs is EXPSPACE-complete, even if the size of the thread pool and the context bound are given in binary. Our main result, the EXPSPACE upper bound, is derived using a sequence of new succinct encoding techniques of independent language-theoretic interest. In particular, we show a polynomial-time construction of downward closures of languages accepted by succinct pushdown automata as doubly succinct nondeterministic finite automata. While there are explicit doubly exponential lower bounds on the size of nondeterministic finite automata accepting the downward closure, our result shows these automata can be compressed. We show that thread pooling significantly reduces computational power: in contrast, if only the context bound is provided in binary, but there is no thread pooling, the safety verification problem becomes 3EXPSPACE-complete. Given the high complexity lower bounds of related problems involving binary parameters, the relatively low complexity of safety verification with thread-pooling comes as a surprise.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3