Unified Buffer: Compiling Image Processing and Machine Learning Applications to Push-Memory Accelerators

Author:

Liu Qiaoyi1ORCID,Setter Jeff1ORCID,Huff Dillon1ORCID,Strange Maxwell1ORCID,Feng Kathleen1ORCID,Horowitz Mark1ORCID,Raina Priyanka1ORCID,Kjolstad Fredrik1ORCID

Affiliation:

1. Stanford University, Stanford, CA, USA

Abstract

Image processing and machine learning applications benefit tremendously from hardware acceleration. Existing compilers target either FPGAs, which sacrifice power and performance for programmability, or ASICs, which become obsolete as applications change. Programmable domain-specific accelerators, such as coarse-grained reconfigurable arrays (CGRAs), have emerged as a promising middle-ground, but they have traditionally been difficult compiler targets since they use a different memory abstraction. In contrast to CPUs and GPUs, the memory hierarchies of domain-specific accelerators use push memories : memories that send input data streams to computation kernels or to higher or lower levels in the memory hierarchy and store the resulting output data streams. To address the compilation challenge caused by push memories, we propose that the representation of these memories in the compiler be altered to directly represent them by combining storage with address generation and control logic in a single structure—a unified buffer. The unified buffer abstraction enables the compiler to separate generic push memory optimizations from the mapping to specific memory implementations in the backend. This separation allows our compiler to map high-level Halide applications to different CGRA memory designs, including some with a ready-valid interface. The separation also opens the opportunity for optimizing push memory elements on reconfigurable arrays. Our optimized memory implementation, the Physical Unified Buffer, uses a wide-fetch, single-port SRAM macro with built-in address generation logic to implement a buffer with two read and two write ports. It is 18% smaller and consumes 31% less energy than a physical buffer implementation using a dual-port memory that only supports two ports. Finally, our system evaluation shows that enabling a compiler to support CGRAs leads to performance and energy benefits. Over a wide range of image processing and machine learning applications, our CGRA achieves 4.7× better runtime and 3.5× better energy-efficiency compared to an FPGA.

Funder

DARPA’s DSSoC

Stanford AHA Center

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3