On Missing Labels, Long-tails and Propensities in Extreme Multi-label Classification
Author:
Affiliation:
1. Aalto University, Helsinki, Finland
2. Poznan University of Technology, Poznan, Poland
3. Yahoo! Research & Poznan University of Technology, New York, NY, USA
Funder
Academy of Finland
Poznan Supercomputing and Networking Center
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3534678.3539466
Reference42 articles.
1. Rahul Agrawal Archit Gupta Yashoteja Prabhu and Manik Varma. 2013. Multilabel learning with millions of labels: Recommending advertiser bid phrases for web pages. In WWW. 13--24. Rahul Agrawal Archit Gupta Yashoteja Prabhu and Manik Varma. 2013. Multilabel learning with millions of labels: Recommending advertiser bid phrases for web pages. In WWW. 13--24.
2. Rohit Babbar and Bernhard Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for Extreme Multi-label Classification. In WSDM. 721--729. Rohit Babbar and Bernhard Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for Extreme Multi-label Classification. In WSDM. 721--729.
3. Rohit Babbar and Bernhard Schölkopf . 2019. Data scarcity, robustness and extreme multi-label classification. Machine Learning 108 (09 2019 ). Rohit Babbar and Bernhard Schölkopf. 2019. Data scarcity, robustness and extreme multi-label classification. Machine Learning 108 (09 2019).
4. Mokhtar S. Bazaraa , Hanif D. Sherali , and Chitharanjan M . Shetty . 2006 . Nonlinear Programming : Theory and Algorithms. Wiley . Mokhtar S. Bazaraa, Hanif D. Sherali, and Chitharanjan M. Shetty. 2006. Nonlinear Programming: Theory and Algorithms. Wiley.
5. Learning from positive and unlabeled data: a survey
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Joint empirical risk minimization for instance-dependent positive-unlabeled data;Knowledge-Based Systems;2024-11
2. MatchXML: An Efficient Text-Label Matching Framework for Extreme Multi-Label Text Classification;IEEE Transactions on Knowledge and Data Engineering;2024-09
3. Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
4. MLAWSMOTE: Oversampling in Imbalanced Multi-label Classification with Missing Labels by Learning Label Correlation Matrix;International Journal of Computational Intelligence Systems;2024-08-05
5. BPT-PLR: A Balanced Partitioning and Training Framework with Pseudo-Label Relaxed Contrastive Loss for Noisy Label Learning;Entropy;2024-07-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3