1. [n.d.]. GSRC Benchmark. http://vlsicad.eecs.umich.edu/BK/GSRCbench/ [n.d.]. GSRC Benchmark. http://vlsicad.eecs.umich.edu/BK/GSRCbench/
2. [n.d.]. MCNC Benchmark. http://vlsicad.eecs.umich.edu/BK/MCNCbench/ [n.d.]. MCNC Benchmark. http://vlsicad.eecs.umich.edu/BK/MCNCbench/
3. Marcin Andrychowicz , Anton Raichuk , and et al. Sta"czyk. 2021. What matters in on-policy reinforcement learning? a large-scale empirical study . In Int. Conf. on Learning Representations (ICLR). Marcin Andrychowicz, Anton Raichuk, and et al. Sta"czyk. 2021. What matters in on-policy reinforcement learning? a large-scale empirical study. In Int. Conf. on Learning Representations (ICLR).
4. Song Bai , Feihu Zhang , and Philip H. S . Torr . 2021 . Hypergraph Convolution and Hypergraph Attention. Pattern Recognition ( 2021). Song Bai, Feihu Zhang, and Philip H. S. Torr. 2021. Hypergraph Convolution and Hypergraph Attention. Pattern Recognition (2021).
5. Charlie Blake , Vitaly Kurin , Maximilian Igl , and Shimon Whiteson . 2021 . Snowflake: Scaling GNNs to High-Dimensional Continuous Control via Parameter Freezing . In Proc. Adv. Neural Inf. Proc. Systems (NIPS). Charlie Blake, Vitaly Kurin, Maximilian Igl, and Shimon Whiteson. 2021. Snowflake: Scaling GNNs to High-Dimensional Continuous Control via Parameter Freezing. In Proc. Adv. Neural Inf. Proc. Systems (NIPS).