Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage

Author:

Wang Yu1,Zhao Yuying1,Dong Yushun2,Chen Huiyuan3,Li Jundong2,Derr Tyler1

Affiliation:

1. Vanderbilt University, Nashville, TN, USA

2. University of Virginia, Charlottesville, VA, USA

3. Case Western Reserve University, Cleveland, OH, USA

Funder

the Cisco Faculty Research Award

the National Science Foundation (NSF)

Publisher

ACM

Reference36 articles.

1. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In Uncertainty in Artificial Intelligence. PMLR 2114--2124. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In Uncertainty in Artificial Intelligence. PMLR 2114--2124.

2. Avishek Bose and William Hamilton . 2019 . Compositional fairness constraints for graph embeddings . In International Conference on Machine Learning. 715--724 . Avishek Bose and William Hamilton. 2019. Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning. 715--724.

3. Structured Graph Convolutional Networks with Stochastic Masks for Recommender Systems

4. Ming Chen , Zhewei Wei , Zengfeng Huang , Bolin Ding , and Yaliang Li . 2020 . Simple and Deep Graph Convolutional Networks . In Proceedings of the 37th International Conference on Machine Learning, ICML 2020. Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020. Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020.

5. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing Shortcomings in Fair Graph Learning Datasets: Towards a New Benchmark;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. One Fits All: Learning Fair Graph Neural Networks for Various Sensitive Attributes;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Toward Structure Fairness in Dynamic Graph Embedding: A Trend-aware Dual Debiasing Approach;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. IDEA: A Flexible Framework of Certified Unlearning for Graph Neural Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. Masked Graph Transformer for Large-Scale Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3