Robust Inverse Framework using Knowledge-guided Self-Supervised Learning
Author:
Affiliation:
1. University of Minnesota - Twin Cities, Minneapolis, MN, USA
2. University of Pittsburgh, Pittsburgh, PA, USA
3. Penn State University, State College, PA, USA
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3534678.3539448
Reference38 articles.
1. Nans Addor et al. 2017. The CAMELS data set: Catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences (2017). Nans Addor et al. 2017. The CAMELS data set: Catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences (2017).
2. Camila Alvarez-Garreton et al. 2018. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies-Chile dataset. Hydrology and Earth System Sciences (2018). Camila Alvarez-Garreton et al. 2018. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies-Chile dataset. Hydrology and Earth System Sciences (2018).
3. Lynton Ardizzone et al. 2018. Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730 (2018). Lynton Ardizzone et al. 2018. Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730 (2018).
4. Keith Beven . 202 0. Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes ( 2020 ). Keith Beven. 2020. Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes (2020).
5. Vinicius B.P. Chagas et al . 2020 . CAMELS-BR: Hydrometeorological time series and landscape attributes for 897 catchments in Brazil. Earth System Science Data ( 2020). Vinicius B.P. Chagas et al. 2020. CAMELS-BR: Hydrometeorological time series and landscape attributes for 897 catchments in Brazil. Earth System Science Data (2020).
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancing Hydrology through Machine Learning: Insights, Challenges, and Future Directions Using the CAMELS, Caravan, GRDC, CHIRPS, PERSIANN, NLDAS, GLDAS, and GRACE Datasets;Water;2024-07-03
2. Predicting the growth trajectory and yield of greenhouse strawberries based on knowledge-guided computer vision;Computers and Electronics in Agriculture;2024-05
3. Using Knowledge-Guided Machine Learning To Assess Patterns of Areal Change in Waterbodies across the Contiguous United States;Environmental Science & Technology;2024-03-06
4. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems;Nature Communications;2024-01-08
5. Evolution-Based Feature Selection for Predicting Dissolved Oxygen Concentrations in Lakes;Lecture Notes in Computer Science;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3