Abstract
Model-finders, such as SAT/SMT-solvers and Alloy, are used widely both directly and embedded in domain-specific tools. They support both conventional verification and, unlike other verification tools, property-free exploration. To do this effectively, they must produce output that helps users with these tasks. Unfortunately, the output of model-finders has seen relatively little rigorous human-factors study.
Conventionally, these tools tend to show one satisfying instance at a time. Drawing inspiration from the cognitive science literature, we investigate two aspects of model-finder output: how many instances to show at once, and whether all instances must actually satisfy the input constraints. Using both controlled studies and open-ended talk-alouds, we show that there is benefit to showing negative instances in certain settings; the impact of multiple instances is less clear. Our work is a first step in a theoretically grounded approach to understanding how users engage cognitively with model-finder output, and how those tools might better support users in doing so.
Funder
U.S. National Science Foundation
U.S. DARPA
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献