Affiliation:
1. Tsinghua University, Beijing, China
2. Renmin University of China, Beijing, China
Abstract
Competitiveness degree analysis is a focal point of business strategy and competitive intelligence, aimed to help managers closely monitor to what extent their rivals are competing with them. This article proposes a novel method, namely BCQ, to measure the competitiveness degree between peers from query logs as an important form of user generated contents, which reflects the “wisdom of crowds” from the search engine users’ perspective. In doing so, a bipartite graph model is developed to capture the competitive relationships through conjoint attributes hidden in query logs, where the notion of competitiveness degree for entity pairs is introduced, and then used to identify the competitive paths mapped in the bipartite graph. Subsequently, extensive experiments are conducted to demonstrate the effectiveness of BCQ to quantify the competitiveness degrees. Experimental results reveal that BCQ can well support competitors ranking, which is helpful for devising competitive strategies and pursuing market performance. In addition, efficiency experiments on synthetic data show a good scalability of BCQ on large scale of query logs.
Funder
National Natural Science Foundation of China
MOE Project of Key Research Institute of Humanities and Social Sciences at Universities of China
Publisher
Association for Computing Machinery (ACM)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献