Smart City Construction and Management by Digital Twins and BIM Big Data in COVID-19 Scenario

Author:

Lv Zhihan1ORCID,Chen Dongliang2,Lv Haibin3

Affiliation:

1. Department of Game Design, Faculty of Arts, Uppsala University, Uppsala, Sweden

2. College of Computer Science and Technology, Qingdao University, Qingdao, China

3. North China Sea Offshore Engineering Survey Institute, Ministry of Natural Resources North Sea Bureau, Qingdao, China

Abstract

With the rapid development of information technology and the spread of Corona Virus Disease 2019 (COVID-19), the government and urban managers are looking for ways to use technology to make the city smarter and safer. Intelligent transportation can play a very important role in the joint prevention. This work expects to explore the building information modeling (BIM) big data (BD) processing method of digital twins (DTs) of Smart City, thus speeding up the construction of Smart City and improve the accuracy of data processing. During construction, DTs build the same digital copy of the smart city. On this basis, BIM designs the building's keel and structure, optimizing various resources and configurations of the building. Regarding the fast data growth in smart cities, a complex data fusion and efficient learning algorithm, namely Multi- Graphics Processing Unit (GPU) , is proposed to process the multi-dimensional and complex BD based on the compositive rough set model. The Bayesian network solves the multi-label classification. Each label is regarded as a Bayesian network node. Then, the structural learning approach is adopted to learn the label Bayesian network's structure from data. On the P53-old and the P53-new datasets, the running time of Multi-GPU decreases as the number of GPUs increases, approaching the ideal linear speedup ratio. With the continuous increase of K value, the deterministic information input into the tag BN will be reduced, thus reducing the classification accuracy. When K = 3, MLBN can provide the best data analysis performance. On genbase dataset, the accuracy of MLBN is 0.982 ± 0.013. Through experiments, the BIM BD processing algorithm based on Bayesian Network Structural Learning (BNSL) helps decision-makers use complex data in smart cities efficiently.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3