Probabilistic Human Intent Recognition for Shared Autonomy in Assistive Robotics

Author:

Jain Siddarth1,Argall Brenna1

Affiliation:

1. Northwestern University and Shirley Ryan AbilityLab, Chicago, IL

Abstract

Effective human-robot collaboration in shared autonomy requires reasoning about the intentions of the human partner. To provide meaningful assistance, the autonomy has to first correctly predict, or infer, the intended goal of the human collaborator. In this work, we present a mathematical formulation for intent inference during assistive teleoperation under shared autonomy. Our recursive Bayesian filtering approach models and fuses multiple non-verbal observations to probabilistically reason about the intended goal of the user without explicit communication. In addition to contextual observations, we model and incorporate the human agent’s behavior as goal-directed actions with adjustable rationality to inform intent recognition. Furthermore, we introduce a user-customized optimization of this adjustable rationality to achieve user personalization. We validate our approach with a human subjects study that evaluates intent inference performance under a variety of goal scenarios and tasks. Importantly, the studies are performed using multiple control interfaces that are typically available to users in the assistive domain, which differ in the continuity and dimensionality of the issued control signals. The implications of the control interface limitations on intent inference are analyzed. The study results show that our approach in many scenarios outperforms existing solutions for intent inference in assistive teleoperation and otherwise performs comparably. Our findings demonstrate the benefit of probabilistic modeling and the incorporation of human agent behavior as goal-directed actions where the adjustable rationality model is user customized. Results further show that the underlying intent inference approach directly affects shared autonomy performance, as do control interface limitations.

Funder

National Institutes of Health

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3