Mining Historic Query Trails to Label Long and Rare Search Engine Queries

Author:

Bailey Peter1,White Ryen W.2,Liu Han3,Kumaran Giridhar1

Affiliation:

1. Microsoft

2. Microsoft Research

3. Carnegie Mellon University

Abstract

Web search engines can perform poorly for long queries (i.e., those containing four or more terms), in part because of their high level of query specificity. The automatic assignment of labels to long queries can capture aspects of a user’s search intent that may not be apparent from the terms in the query. This affords search result matching or reranking based on queries and labels rather than the query text alone. Query labels can be derived from interaction logs generated from many users’ search result clicks or from query trails comprising the chain of URLs visited following query submission. However, since long queries are typically rare, they are difficult to label in this way because little or no historic log data exists for them. A subset of these queries may be amenable to labeling by detecting similarities between parts of a long and rare query and the queries which appear in logs. In this article, we present the comparison of four similarity algorithms for the automatic assignment of Open Directory Project category labels to long and rare queries, based solely on matching against similar satisfied query trails extracted from log data. Our findings show that although the similarity-matching algorithms we investigated have tradeoffs in terms of coverage and accuracy, one algorithm that bases similarity on a popular search result ranking function (effectively regarding potentially-similar queries as “documents”) outperforms the others. We find that it is possible to correctly predict the top label better than one in five times, even when no past query trail exactly matches the long and rare query. We show that these labels can be used to reorder top-ranked search results leading to a significant improvement in retrieval performance over baselines that do not utilize query labeling, but instead rank results using content-matching or click-through logs. The outcomes of our research have implications for search providers attempting to provide users with highly-relevant search results for long queries.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Starting Conversations with Search Engines - Interfaces that Elicit Natural Language Queries;Proceedings of the 2021 Conference on Human Information Interaction and Retrieval;2021-03-14

2. Search Support Tools;Human–Computer Interaction Series;2020

3. Characterizing Searches for Mathematical Concepts;2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL);2019-06

4. Assessing the Quality of Search Process Models;Lecture Notes in Computer Science;2018

5. Characterizing, predicting, and handling web search queries that match very few or no results;Journal of the Association for Information Science and Technology;2017-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3