A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least Squares Problems

Author:

Scott Jennifer1ORCID,Tůma Miroslav2

Affiliation:

1. STFC Rutherford Appleton Laboratory and University of Reading, Reading, UK

2. Charles University, Praha 8, Czech Republic

Abstract

Large-scale overdetermined linear least squares problems arise in many practical applications. One popular solution method is based on the backward stable QR factorization of the system matrix A . This article focuses on sparse-dense least squares problems in which A is sparse except from a small number of rows that are considered dense. For large-scale problems, the direct application of a QR solver either fails because of insufficient memory or is unacceptably slow. We study several solution approaches based on using a sparse QR solver without modification, focussing on the case that the sparse part of A is rank deficient. We discuss partial matrix stretching and regularization and propose extending the augmented system formulation with iterative refinement for sparse problems to sparse-dense problems, optionally incorporating multi-precision arithmetic. In summary, our computational study shows that, before applying a black-box QR factorization, a check should be made for rows that are classified as dense and, if such rows are identified, then A should be split into sparse and dense blocks; a number of ways to use a black-box QR factorization to exploit this splitting are possible, with no single method found to be the best in all cases.

Funder

UK Engineering and Physical Sciences Research Council

Grant Agency of the Czech Republic

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference47 articles.

1. M. Adlers. 2000. Topics in Sparse Least Squares Problems. Technical Report. Department of Mathematics, Linköping University, Linköping, Sweden.

2. Matrix stretching for sparse least squares problems

3. Matrix enlarging methods and their application

4. Multifrontal QR Factorization in a Multiprocessor Environment

5. Using Perturbed $QR$ Factorizations to Solve Linear Least-Squares Problems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3