Parallelizing Sequential Graph Computations

Author:

Fan Wenfei1,Yu Wenyuan2,Xu Jingbo2,Zhou Jingren2,Luo Xiaojian2,Yin Qiang2,Lu Ping3,Cao Yang4,Xu Ruiqi4

Affiliation:

1. University of Edinburgh, Beihang University, and Shenzhen Institute of Computing Sciences

2. Alibaba Group, Hangzhou, China

3. BDBC, Beihang University, Beijing, China

4. University of Edinburgh, Edinburgh, UK

Abstract

This article presents GRAPE, a parallel <underline>GRAP</underline>h <underline>E</underline>ngine for graph computations. GRAPE differs from prior systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental function as the intermediate consequence operator. We show that users can devise existing sequential graph algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable performance to the state-of-the-art graph systems using real-life and synthetic graphs.

Funder

EPSRC

ERC

NSFC

The Foundation for Innovative Research Groups of NSFC

973 Program

Beijing Advanced Innovation Center for Big Data and Brain Computing

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference72 articles.

1. 2006. UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/. 2006. UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/.

2. 2010. Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml. 2010. Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml.

3. 2011. Movielens. http://grouplens.org/datasets/movielens/. 2011. Movielens. http://grouplens.org/datasets/movielens/.

4. 2012. Friendster. https://snap.stanford.edu/data/com-Friendster.html. 2012. Friendster. https://snap.stanford.edu/data/com-Friendster.html.

5. 2012. MPICH. https://www.mpich.org/. 2012. MPICH. https://www.mpich.org/.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GPU-accelerated relaxed graph pattern matching algorithms;The Journal of Supercomputing;2024-06-16

2. GraphScope Flex: LEGO-like Graph Computing Stack;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. Graph Computation with Adaptive Granularity;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Extending Graph Rules with Oracles;Proceedings of the VLDB Endowment;2024-03

5. Linking Entities across Relations and Graphs;ACM Transactions on Database Systems;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3