A needed narrowing strategy

Author:

Antoy Sergio1,Echahed Rachid2,Hanus Michael3

Affiliation:

1. Portland State Univ., Portland, OR

2. Institut IMAG, Grenoble, France

3. Christian-Albrechts-Univ., Kiel, Germany

Abstract

The narrowing relation over terms constitutes the basis of the most important operational semantics of languages that integrate functional and logic programming paradigms. It also plays an important role in the definition of some algorithms of unification modulo equational theories that are defined by confluent term rewriting systems. Due to the inefficiency of simple narrowing, many refined narrowing strategies have been proposed in the last decade. This paper presents a new narrowing strategy that is optimal in several respects. For this purpose, we propose a notion of a needed narrowing step that, for inductively sequential rewrite systems, extends the Huet and Lévy notion of a needed reduction step. We define a strategy, based on this notion, that computes only needed narrowing steps. Our strategy is sound and complete for a large class of rewrite systems, is optimal with respect to the cost measure that counts the number of distinct steps of a derivation, computes only incomparable and disjoint unifiers, and is efficiently implemented by unification.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference72 articles.

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparcl: A language for partially invertible computation;Journal of Functional Programming;2024

2. RICE: An Optimizing Curry Compiler;Practical Aspects of Declarative Languages;2023

3. A Rule-Based Procedure for Graph Query Solving;Graph Transformation;2023

4. A Monadic Implementation of Functional Logic Programs;Proceedings of the 24th International Symposium on Principles and Practice of Declarative Programming;2022-09-20

5. From Logic to Functional Logic Programs;Theory and Practice of Logic Programming;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3