Online Metric Algorithms with Untrusted Predictions

Author:

Antoniadis Antonios1ORCID,Coester Christian2ORCID,Eliáš Marek3ORCID,Polak Adam4ORCID,Simon Bertrand5ORCID

Affiliation:

1. University of Twente, NB, Netherlands

2. University of Oxford, Oxford, United Kingdom

3. Bocconi University, Italy

4. Max Planck Institute for Informatics, Germany and Jagiellonian University, Kraków, Poland

5. IN2P3 Computing Center, CNRS, France

Abstract

Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only benefit from good predictions, but should also achieve a decent performance when the predictions are inadequate. In this article, we propose a prediction setup for arbitrary metrical task systems (MTS) (e.g.,  caching , k -server, and convex body chasing ) and online matching on the line . We utilize results from the theory of online algorithms to show how to make the setup robust. Specifically, for caching, we present an algorithm whose performance, as a function of the prediction error, is exponentially better than what is achievable for general MTS. Finally, we present an empirical evaluation of our methods on real-world datasets, which suggests practicality.

Funder

DFG

NWO VICI

ERC

National Science Center of Poland

Swiss National Science Foundation

Bertrand Simon

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference55 articles.

1. Keerti Anand, Rong Ge, and Debmalya Panigrahi. 2020. Customizing ML predictions for online algorithms. In Proceedings of the International Conference on Machine Learning. PMLR, 303–313.

2. The dynamics of repeat consumption

3. Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. 2020. Secretary and online matching problems with machine learned advice. In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS’20).

4. A Primal-Dual Randomized Algorithm for Weighted Paging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Unit Profit Knapsack with Predictions;Algorithmica;2024-06-13

2. Latency-Aware Cache Mechanism for Resolver Service of Domain Name Systems;NOMS 2024-2024 IEEE Network Operations and Management Symposium;2024-05-06

3. Matching on the Line Admits no \(o(\sqrt {\log n})\) -Competitive Algorithm;ACM Transactions on Algorithms;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3