Randomly Spiking Dynamic Neural Fields

Author:

Chappet De Vangel Benoît1,Torres-huitzil Cesar2,Girau Bernard1

Affiliation:

1. Université de Lorraine, France

2. Cinvestav Tamaulipas, Mexico

Abstract

Bio-inspired neural computation attracts a lot of attention as a possible solution for the future challenges in designing computational resources. Dynamic neural fields (DNF) provide cortically inspired models of neural populations to which computation can be applied for a wide variety of tasks, such as perception and sensorimotor control. DNFs are often derived from continuous neural field theory (CNFT). In spite of the parallel structure and regularity of CNFT models, few studies of hardware implementations have been carried out targeting embedded real-time processing. In this article, a hardware-friendly model adapted from the CNFT is introduced, namely the RSDNF model (randomly spiking dynamic neural fields). Thanks to their simplified 2D structure, RSDNFs achieve scalable parallel implementations on digital hardware while maintaining the behavioral properties of CNFT models. Spike-based computations within neurons in the field are introduced to reduce interneuron connection bandwidth. Additionally, local stochastic spike propagation ensures inhibition and excitation broadcast without a fully connected network. The behavioral soundness and robustness of the model in the presence of noise and distracters is fully validated through software and hardware. A field programmable gate array (FPGA) implementation shows how the RSDNF model ensures a level of density and scalability out of reach for previous hardware implementations of dynamic neural field models.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3