Ignore, Trust, or Negotiate: Understanding Clinician Acceptance of AI-Based Treatment Recommendations in Health Care
Author:
Affiliation:
1. Human-Computer Interaction Institute, Carnegie Mellon University, United States
2. Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States
3. University of Pittsburgh, United States
Funder
Center for Machine Learning and Health, School of Computer Science, Carnegie Mellon University
National Institutes of Health
National Science Foundation
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3544548.3581075
Reference94 articles.
1. Examining the effect of explanation on satisfaction and trust in AI diagnostic systems
2. To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
3. Laura Arbelaez Ossa Georg Starke Giorgia Lorenzini Julia E. Vogt David M. Shaw and Bernice Simone Elger. 2022. Re-focusing explainability in medicine. Digital Health 8(2022). https://doi.org/10.1177/20552076221074488 10.1177/20552076221074488
4. Laura Arbelaez Ossa Georg Starke Giorgia Lorenzini Julia E. Vogt David M. Shaw and Bernice Simone Elger. 2022. Re-focusing explainability in medicine. Digital Health 8(2022). https://doi.org/10.1177/20552076221074488
5. Updates in Human-AI Teams: Understanding and Addressing the Performance/Compatibility Tradeoff
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Physician Adoption of AI Assistant;Manufacturing & Service Operations Management;2024-09
2. In search of verifiability: Explanations rarely enable complementary performance in AI‐advised decision making;AI Magazine;2024-07
3. Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis;Future Internet;2024-06-23
4. NLP for Maternal Healthcare: Perspectives and Guiding Principles in the Age of LLMs;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03
5. Meaningful Transparency for Clinicians: Operationalising HCXAI Research with Gynaecologists;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3