Efficient Computation of Middle Levels Gray Codes

Author:

MÜTZE Torsten1,Nummenpalo Jerri2

Affiliation:

1. Technische Universität Berlin, Institute of Mathematics, Berlin, Germany

2. ETH Zürich, Department of Computer Science, Switzerland

Abstract

For any integer n ≥ 1, a middle levels Gray code is a cyclic listing of all bitstrings of length 2 n +1 that have either n or n +1 entries equal to 1 such that any two consecutive bitstrings in the list differ in exactly one bit. The question whether such a Gray code exists for every n ≥ 1 has been the subject of intensive research during the past 30 years and has been answered affirmatively only recently [T. Mütze. Proof of the middle levels conjecture. Proc. London Math. Soc. , 112(4):677--713, 2016]. In this work, we provide the first efficient algorithm to compute a middle levels Gray code. For a given bitstring, our algorithm computes the next ℓ bitstrings in the Gray code in time O ( n ℓ (1+ n /ℓ)), which is O ( n ) on average per bitstring provided that ℓ = Ω ( n ).

Funder

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference36 articles.

1. Efficient generation of the binary reflected gray code and its applications

2. Gray codes with restricted density

3. The Chung–Feller theorem revisited

4. Hamilton Circuits in Tree Graphs

5. P. Diaconis and R. Graham. 2012. Magical Mathematics. Princeton University Press Princeton NJ. P. Diaconis and R. Graham. 2012. Magical Mathematics. Princeton University Press Princeton NJ.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3