A Digital Companion Architecture for Ambient Intelligence

Author:

Garcia Kimberly1ORCID,Vontobel Jonathan1ORCID,Mayer Simon1ORCID

Affiliation:

1. University of St.Gallen, St. Gallen, Switzerland

Abstract

Ambient Intelligence (AmI) focuses on creating environments capable of proactively and transparently adapting to users and their activities. Traditionally, AmI focused on the availability of computational devices, the pervasiveness of networked environments, and means to interact with users. In this paper, we propose a renewed AmI architecture that takes into account current technological advancements while focusing on proactive adaptation for assisting and protecting users. This architecture consist of four phases: Perceive, Interpret, Decide, and Interact. The AmI systems we propose, called Digital Companions (DC), can be embodied in a variety of ways (e.g., through physical robots or virtual agents) and are structured according to these phases to assist and protect their users. We further categorize DCs into Expert DCs and Personal DCs, and show that this induces a favorable separation of concerns in AmI systems, where user concerns (including personal user data and preferences) are handled by Personal DCs and environment concerns (including interfacing with environmental artifacts) are assigned to Expert DCs; this separation has favorable privacy implications as well. Herein, we introduce this architecture and validate it through a prototype in an industrial scenario where robots and humans collaborate to perform a task.

Publisher

Association for Computing Machinery (ACM)

Reference71 articles.

1. Rajendra Akerkar and Priti Sajja. 2009. Knowledge-based systems. Jones & Bartlett Publishers.

2. Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. 2016. Spice: Semantic propositional image caption evaluation. In Computer Vision-ECCV 2016: 14th European Conference. Springer, 382--398.

3. Ambient Intelligence: The Confluence of Ubiquitous/Pervasive Computing and Artificial Intelligence

4. GEAR: Gaze-enabled augmented reality for human activity recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3