A Game-theoretic Approach to Data Interaction

Author:

McCamish Ben1,Ghadakchi Vahid2,Termehchy Arash2,Touri Behrouz3,Cotilla-Sanchez Eduardo2,Huang Liang2,Changpinyo Soravit4

Affiliation:

1. Oregon State University, Corvallis, OR USA

2. Oregon State University, Corvallis, OR, USA

3. University of California San Diego, La Jolla, CA, USA

4. University of Southern California, Los Angeles, CA, USA

Abstract

As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management system (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way they express their information needs in the form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users’ queries effectively. We model the interaction between the user and the DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in the form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users’ strategies and proves that it improves the effectiveness of answering queries, stochastically speaking. We propose two efficient implementations of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3