Adaptive Equi-Energy Sampler

Author:

Schreck Amandine1,Fort Gersende1,Moulines Eric1

Affiliation:

1. LTCI, Telecom ParisTech and CNRS

Abstract

Markov chain Monte Carlo (MCMC) methods allow to sample a distribution known up to a multiplicative constant. Classical MCMC samplers are known to have very poor mixing properties when sampling multimodal distributions. The Equi-Energy sampler is an interacting MCMC sampler proposed by Kou, Zhou and Wong in 2006 to sample difficult multimodal distributions. This algorithm runs several chains at different temperatures in parallel, and allow lower-tempered chains to jump to a state from a higher-tempered chain having an energy “close” to that of the current state. A major drawback of this algorithm is that it depends on many design parameters and thus, requires a significant effort to tune these parameters.In this article, we introduce an Adaptive Equi-Energy (AEE) sampler that automates the choice of the selection mecanism when jumping onto a state of the higher-temperature chain. We prove the ergodicity and a strong law of large numbers for AEE, and for the original Equi-Energy sampler as well. Finally, we apply our algorithm to motif sampling in DNA sequences.

Funder

Agence Nationale de la Recherche

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3