Semantic parameterization

Author:

Breaux Travis D.1,Antón Annie I.1,Doyle Jon1

Affiliation:

1. North Carolina State University, Raleigh, NC

Abstract

Software engineers must systematically account for the broad scope of environmental behavior, including nonfunctional requirements, intended to coordinate the actions of stakeholders and software systems. The Inquiry Cycle Model (ICM) provides engineers with a strategy to acquire and refine these requirements by having domain experts answer six questions: who, what, where, when, how, and why. Goal-based requirements engineering has led to the formalization of requirements to answer the ICM questions about when , how , and why goals are achieved, maintained, or avoided. In this article, we present a systematic process called Semantic Parameterization for expressing natural language domain descriptions of goals as specifications in description logic. The formalization of goals in description logic allows engineers to automate inquiries using who , what , and where questions, completing the formalization of the ICM questions. The contributions of this approach include new theory to conceptually compare and disambiguate goal specifications that enables querying goals and organizing goals into specialization hierarchies. The artifacts in the process include a dictionary that aligns the domain lexicon with unique concepts, distinguishing between synonyms and polysemes, and several natural language patterns that aid engineers in mapping common domain descriptions to formal specifications. Semantic Parameterization has been empirically validated in three case studies on policy and regulatory descriptions that govern information systems in the finance and health-care domains.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SHAMROQ: A Software Engineering Methodology to Extract Deontic Expressions from the Code of Federal Regulations — A Single-Case, Embedded Case Study;International Journal of Software Engineering and Knowledge Engineering;2023-10-27

2. ML-Based Compliance Verification of Data Processing Agreements against GDPR;2023 IEEE 31st International Requirements Engineering Conference (RE);2023-09

3. Safety Patterns for SysML: What Does OMG Specify?;Lecture Notes in Computer Science;2020

4. The Case for Privacy Awareness Requirements;Cyber Law, Privacy, and Security;2019

5. The Case for Privacy Awareness Requirements;Censorship, Surveillance, and Privacy;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3