Simultaneous multithreading

Author:

Tullsen Dean M.1,Eggers Susan J.1,Levy Henry M.1

Affiliation:

1. Department of Computer Science and Engineering, University of Washington, Seattle, WA

Abstract

This paper examines simultaneous multithreading, a technique permitting several independent threads to issue instructions to a superscalar's multiple functional units in a single cycle. We present several models of simultaneous multithreading and compare them with alternative organizations: a wide superscalar, a fine-grain multithreaded processor, and single-chip, multiple-issue multiprocessing architectures. Our results show that both (single-threaded) superscalar and fine-grain multithreaded architectures are limited their ability to utilize the resources of a wide-issue processor. Simultaneous multithreading has the potential to achieve 4 times the throughput of a superscalar, and double that of fine-grain multithreading. We evaluate several cache configurations made possible by this type of organization and evaluate tradeoffs between them. We also show that simultaneous multithreading is an attractive alternative to single-chip multiprocessors; simultaneous multithreaded processors with a variety of organizations outperform corresponding conventional multiprocessors with similar execution resources.While simultaneous multithreading has excellent potential to increase processor utilization, it can add substantial complexity to the design. We examine many of these complexities and evaluate alternative organizations in the design space.

Publisher

Association for Computing Machinery (ACM)

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation on Parallel Speculation-Based Construction of a Binary Search Tree;International Journal of Networked and Distributed Computing;2023-11-08

2. A Multicore and Multithreaded Microcontroller;Lecture Notes in Networks and Systems;2023

3. Building a RISC-V Processor with a Multiple Hart Pipeline;Undergraduate Topics in Computer Science;2023

4. Implementing the Broadcast Operation in a Distributed Task-based Runtime;2022 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW);2022-11

5. Effect of Hyper-Threading in Latency-Critical Multithreaded Cloud Applications and Utilization Analysis of the Major System Resources;Future Generation Computer Systems;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3