Multimodal Recommender Systems: A Survey

Author:

Liu Qidong12ORCID,Hu Jiaxi2ORCID,Xiao Yutian2ORCID,Zhao Xiangyu2ORCID,Gao Jingtong2ORCID,Wang Wanyu2ORCID,Li Qing3ORCID,Tang Jiliang4ORCID

Affiliation:

1. Xi'an Jiaotong University, Xi'an, China

2. City University of Hong Kong, Hong Kong Hong Kong

3. The Hong Kong Polytechnic University, Hong Kong Hong Kong

4. Michigan State University, East Lansing United States

Abstract

The recommender system (RS) has been an integral toolkit of online services. They are equipped with various deep learning techniques to model user preference based on identifier and attribute information. With the emergence of multimedia services, such as short videos, news and etc. , understanding these contents while recommending becomes critical. Besides, multimodal features are also helpful in alleviating the problem of data sparsity in RS. Thus, M ultimodal R ecommender S ystem (MRS) has attracted much attention from both academia and industry recently. In this paper, we will give a comprehensive survey of the MRS models, mainly from technical views. First, we conclude the general procedures and major challenges for MRS. Then, we introduce the existing MRS models according to four categories, i.e., Modality Encoder , Feature Interaction , Feature Enhancement and Model Optimization . Besides, to make it convenient for those who want to research this field, we also summarize the dataset and code resources. Finally, we discuss some promising future directions of MRS and conclude this paper. To access more details of the surveyed papers, such as implementation code, we open source a repository.

Publisher

Association for Computing Machinery (ACM)

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3