An Efficient and Flexible Stochastic CGRA Mapping Approach

Author:

Das Satyajit1ORCID,Martin Kevin2ORCID,Peyret Thomas3ORCID,Coussy Philippe2ORCID

Affiliation:

1. Univ. Bretagne-Sud, UMR 6285, Lab-STICC and Indian Institute of Technology Palakkad, Palakkad, Kerala, India

2. Univ. Bretagne-Sud, UMR 6285, Lab-STICC, Lorient, France

3. CEA, LIST, Gif-sur-Yvette, France

Abstract

Coarse-Grained Reconfigurable Array (CGRA) architectures are promising high-performance and power-efficient platforms. However, mapping applications efficiently on CGRA is a challenging task. This is known to be an NP complete problem. Hence, finding good mapping solutions for a given CGRA architecture within a reasonable time is complex. Additionally, finding scalability in compilation time and memory footprint for large heterogeneous CGRAs is also a well known problem. In this article, we present a stochastic mapping approach that can efficiently explore the architecture space and allows finding best of solutions while having limited and steady use of memory footprint. Experimental results show that our compilation flow allows to reach performances with low-complexity CGRA architectures that are as good as those obtained with more complex ones thanks to the better exploration of the mapping solution space. Parameters considered in our experiments are number of tiles, Register File (RF) size, number of load/store (LS) units, network topologies, and so on. Our results demonstrate that high-quality compilation for a wide range of applications is possible within reasonable run-times. Experiments with several DSP benchmarks show that the best CGRA configuration from the architectural exploration surpasses an ultra low-power DSP optimized RISC-V CPU to achieve up to 15.28× (with an average of 6× and minimum of 3.4×) performance gain and 29.7× (with an average of 13.5× and minimum of 6.3×) energy gain with an area overhead of 1.5× only.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3