Runtime Optimization of System Utility with Variable Hardware

Author:

Martin Paul1,Wanner Lucas2,Srivastava Mani3

Affiliation:

1. Electrical Engineering Department, University of California, Los Angeles, CA

2. Computer Science Department, University of California, Los Angeles

3. Electrical Engineering Department, University of California, Los Angeles

Abstract

Increasing hardware variability in newer integrated circuit fabrication technologies has caused corresponding power variations on a large scale. These variations are particularly exaggerated for idle power consumption, motivating the need to mitigate the effects of variability in systems whose operation is dominated by long idle states with periodic active states. In systems where computation is severely limited by anemic energy reserves and where a long overall system lifetime is desired, maximizing the quality of a given application subject to these constraints is both challenging and an important step toward achieving high-quality deployments. This work describes VaRTOS, an architecture and corresponding set of operating system abstractions that provide explicit treatment of both idle and active power variations for tasks running in real-time operating systems. Tasks in VaRTOS express elasticity by exposing individual knobs —shared variables that the operating system can tune to adjust task quality and, correspondingly, task power, maximizing application utility both on a per-task and on a system-wide basis. We provide results regarding online learning of instance-specific sleep power, active power, and task-level power expenditure on simulated hardware with demonstrated effects for several prototypical applications. Our results on networked sensing applications, which are representative of a broader category of applications that VaRTOS targets, show that VaRTOS can reduce variability-induced energy expenditure errors from over 70% in many cases to under 2% in most cases and under 5% in the worst case.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional Approximation and Approximate Parallelization with the ACCEPT compiler;2021 IEEE 33rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2021-10

2. Energy Optimization for Large-Scale 3D Manycores in the Dark-Silicon Era;IEEE Access;2019

3. NSF expedition on variability-aware software: Recent results and contributions;it - Information Technology;2015-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3