Affiliation:
1. University of Alberta, Edmonton, Canada
Abstract
It is common practice for many large e-commerce operators to analyze daily logged transaction data to predict customer purchase behavior, which may potentially lead to more effective recommendations and increased sales. Traditional recommendation techniques based on collaborative filtering, although having gained success in video and music recommendation, are not sufficient to fully leverage the diverse information contained in the implicit user behavior on e-commerce platforms. In this article, we analyze user action records in the Alibaba Mobile Recommendation dataset from the Alibaba Tianchi Data Lab, as well as the Retailrocket recommender system dataset from the Retail Rocket website. To estimate the probability that a user will purchase a certain item tomorrow, we propose a new model called Time-decayed Multifaceted Factorizing Personalized Markov Chains (Time-decayed Multifaceted-FPMC), taking into account multiple types of user historical actions not only limited to past purchases but also including various behaviors such as clicks, collects and add-to-carts. Our model also considers the time-decay effect of the influence of past actions. To learn the parameters in the proposed model, we further propose a unified framework named Bayesian Sparse Factorization Machines. It generalizes the theory of traditional Factorization Machines to a more flexible learning structure and trains the Time-decayed Multifaceted-FPMC with the Markov Chain Monte Carlo method. Extensive evaluations based on multiple real-world datasets demonstrate that our proposed approaches significantly outperform various existing purchase recommendation algorithms.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Reference46 articles.
1. Alibaba. 2015. Ali-Mobile-Rec. Retrieved from http://tianchi.aliyun.com/datalab/dataSet.htm?id=4. Alibaba. 2015. Ali-Mobile-Rec. Retrieved from http://tianchi.aliyun.com/datalab/dataSet.htm?id=4.
2. powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions
3. Modeling user's receptiveness over time for recommendation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献