Efficient Learning-Based Recommendation Algorithms for Top- N Tasks and Top- N Workers in Large-Scale Crowdsourcing Systems

Author:

Safran Mejdl1ORCID,Che Dunren2

Affiliation:

1. King Saud University and Southern Illinois University Carbondale, Kingdom of Saudi Arabia

2. Southern Illinois University Carbondale, IL, USA

Abstract

The task and worker recommendation problems in crowdsourcing systems have brought up unique characteristics that are not present in traditional recommendation scenarios, i.e., the huge flow of tasks with short lifespans, the importance of workers’ capabilities, and the quality of the completed tasks. These unique features make traditional recommendation approaches no longer satisfactory for task and worker recommendation in crowdsourcing systems. In this article, we propose a two-tier data representation scheme (defining a worker--category suitability score and a worker--task attractiveness score ) to support personalized task and worker recommendations. We also extend two optimization methods, namely least mean square error and Bayesian personalized rank, to better fit the characteristics of task/worker recommendation in crowdsourcing systems. We then integrate the proposed representation scheme and the extended optimization methods along with the two adapted popular learning models, i.e., matrix factorization and kNN, and result in two lines of top- N recommendation algorithms for crowdsourcing systems: (1) Top- N -Tasks recommendation algorithms for discovering the top- N most suitable tasks for a given worker and (2) Top- N -Workers recommendation algorithms for identifying the top- N best workers for a task requester. An extensive experimental study is conducted that validates the effectiveness and efficiency of a broad spectrum of algorithms, accompanied by our analysis and the insights gained.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3