Energy-saving Service Offloading for the Internet of Medical Things Using Deep Reinforcement Learning

Author:

Jiang Jielin1ORCID,Guo Jiajie2ORCID,Khan Maqbool3ORCID,Cui Yan4ORCID,Lin Wenmin5ORCID

Affiliation:

1. School of Computer and Software, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, China, and The State Key Lab. for Novel Software Technology, Nanjing University, China

2. School of Computer and Software, Nanjing University of Information Science and Technology, China

3. Software Competence Center Hagenberg GmbH, Softwarepark, Austria, and SPCAI, Pak-Austria Fachhochschule-Institute of Applied Sciences and Technology, Pakistan

4. College of Mathematics and Information Science, Nanjing Normal University of Special Education, China

5. Institute of VR and Intelligent System, Alibaba Business School, Hangzhou Normal University, China

Abstract

As a critical branch of the Internet of Things (IoT) in the medicine industry, the Internet of Medical Things (IoMT) significantly improves the quality of healthcare due to its real-time monitoring and low medical cost. Benefiting from edge and cloud computing, IoMT is provided with more computing and storage resources near the terminal to meet the low-delay requirements of computation-intensive services. However, the service offloading from health monitoring units (HMUs) to edge servers generates additional energy consumption. Fortunately, artificial intelligence (AI), which has developed rapidly in recent years, has proved effective in some resource allocation applications. Taking both energy consumption and delay into account, we propose an energy-aware service offloading algorithm under an end-edge-cloud collaborative IoMT system with Asynchronous Advantage Actor-critic (A3C), named ECAC. Technically, ECAC uses the structural similarity between the natural distributed IoMT system and A3C, whose parameters are asynchronously updated. Besides, due to the typical delay-sensitivity mechanism and time-energy correction, ECAC can adjust dynamically to the diverse service types and system requirements. Finally, the effectiveness of ECAC for IoMT is proved on real data.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3