An Unified λ -subdivision Scheme for Quadrilateral Meshes with Optimal Curvature Performance in Extraordinary Regions

Author:

Ma Weiyin1,Wang Xu1,Ma Yue1

Affiliation:

1. City University of Hong Kong, China

Abstract

We propose an unified λ -subdivision scheme with a continuous family of tuned subdivisions for quadrilateral meshes. Main subdivision stencil parameters of the unified scheme are represented as spline functions of the subdominant eigenvalue λ of respective subdivision matrices and the λ value can be selected within a wide range to produce desired properties of refined meshes and limit surfaces with optimal curvature performance in extraordinary regions. Spline representations of stencil parameters are constructed based on discrete optimized stencil coefficients obtained by a general tuning framework that optimizes eigenvectors of subdivision matrices towards curvature continuity conditions. To further improve the quality of limit surfaces, a weighting function is devised to penalize sign changes of Gauss curvatures on respective second order characteristic maps. By selecting an appropriate λ , the resulting unified subdivision scheme produces anticipated properties towards different target applications, including nice properties of several other existing tuned subdivision schemes. Comparison results also validate the advantage of the proposed scheme with higher quality surfaces for subdivision at lower λ values, a challenging task for other related tuned subdivision schemes.

Funder

Research Grants Council, University Grants Committee, Hong Kong (SAR), China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference63 articles.

1. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices

2. Removing Polar Rendering Artifacts in Subdivision Surfaces

3. Conditions for tangent plane continuity over recursively generated B-spline surfaces

4. Subdivision scheme tuning around extraordinary vertices

5. Thomas J. Cashman , Ursula H. Augsdörfer , Neil A. Dodgson , and Malcolm A. Sabin . 2009a. NURBS-compatible subdivision surfaces. https://www.cl.cam.ac.uk/research/rainbow/projects/subdnurbs/nurbswep.html . Accessed : October , 2022 . Thomas J. Cashman, Ursula H. Augsdörfer, Neil A. Dodgson, and Malcolm A. Sabin. 2009a. NURBS-compatible subdivision surfaces. https://www.cl.cam.ac.uk/research/rainbow/projects/subdnurbs/nurbswep.html. Accessed: October, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3