Discovering Causes of Traffic Congestion via Deep Transfer Clustering

Author:

Wang Mudan1ORCID,Yuan Yuan1ORCID,Yan Huan1ORCID,Sui Hongjie1ORCID,Zuo Fan2ORCID,Liu Yue2ORCID,Li Yong1ORCID,Jin Depeng1ORCID

Affiliation:

1. Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, China

2. Alibaba Group, China

Abstract

Traffic congestion incurs long delay in travel time, which seriously affects our daily travel experiences. Exploring why traffic congestion occurs is significantly important to effectively address the problem of traffic congestion and improve user experience. Traditional approaches to mine the congestion causes depend on human efforts, which is time consuming and cost-intensive. Hence, we aim at discovering the known and unknown causes of traffic congestion in a systematic way. However, to achieve it, there are three challenges: (1) traffic congestion is affected by several factors with complex spatio-temporal relations; (2) there are a few samples of congestion data with known causes due to the limitation of human label; (3) more unknown congestion causes are unexplored since several factors contribute to traffic congestion. To address above challenges, we design a congestion cause discovery system consisting of two modules: (1) congestion feature extraction module, which extracts the important features distinguishing between different causes of congestion; and (2) congestion cause discovery module, which designs a deep semi-supervised learning based framework to discover the causes of traffic congestion with limited labeled data. Specifically, in pre-training stage, it first leverages a few labeled data as prior knowledge to pre-train the model. Then, in clustering stage, we propose two different clustering methods to discover the congestion causes. For the first clustering method, we extend the classic deep embedded clustering model to produce clusters via soft assignment. For the second one, we iteratively use k -means to group the latent features extracted from the pre-trained model, and use the cluster results as pseudo-labels to fine-tune the network. Extensive experiments show that the performance of our methods is superior to the state-of-the-art baselines, which demonstrates the effectiveness of the proposed cause discovery system. Additionally, our system is deployed and used in the practical production environment at Amap.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3