Reverse Maximum Inner Product Search: Formulation, Algorithms, and Analysis

Author:

Amagata Daichi1ORCID,Hara Takahiro1ORCID

Affiliation:

1. Osaka University, Japan

Abstract

The maximum inner product search (MIPS), which finds the item with the highest inner product with a given query user, is an essential problem in the recommendation field. Usually e-commerce companies face situations where they want to promote and sell new or discounted items. In these situations, we have to consider the following questions: Who is interested in the items, and how do we find them? This article answers this question by addressing a new problem called reverse maximum inner product search (reverse MIPS). Given a query vector and two sets of vectors (user vectors and item vectors), the problem of reverse MIPS finds a set of user vectors whose inner product with the query vector is the maximum among the query and item vectors. Although the importance of this problem is clear, its straightforward implementation incurs a computationally expensive cost. We therefore propose Simpfer, a simple, fast, and exact algorithm for reverse MIPS. In an offline phase, Simpfer builds a simple index that maintains a lower bound of the maximum inner product. By exploiting this index, Simpfer judges whether the query vector can have the maximum inner product or not, for a given user vector, in a constant time. Our index enables filtering user vectors, which cannot have the maximum inner product with the query vector, in a batch. We theoretically demonstrate that Simpfer outperforms baselines employing state-of-the-art MIPS techniques. In addition, we answer two new research questions. Can approximation algorithms further improve reverse MIPS processing? Is there an exact algorithm that is faster than Simpfer? For the former, we show that approximation with quality guarantee provides a little speed-up. For the latter, we propose Simpfer++, a theoretically and practically faster algorithm than Simpfer. Our extensive experiments on real datasets show that Simpfer is at least two orders of magnitude faster than the baselines, and Simpfer++ further improves the online processing time.

Funder

JST PRESTO

JSPS Grant-in-Aid for Scientific Research

JST CREST

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference50 articles.

1. Firas Abuzaid, Geet Sethi, Peter Bailis, and Matei Zaharia. 2019. To index or not to index: Optimizing exact maximum inner product search. In ICDE. 1250–1261.

2. Daichi Amagata and Takahiro Hara. 2021. Reverse maximum inner product search: How to efficiently find users who would like to buy my item? In RecSys. 273–281.

3. Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the xbox recommender system using a euclidean transformation for inner-product spaces. In RecSys. 257–264.

4. Chong Chen, Min Zhang, Yongfeng Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020. Efficient heterogeneous collaborative filtering without negative sampling for recommendation. In AAAI. 19–26.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutual Information-based Preference Disentangling and Transferring for Non-overlapped Multi-target Cross-domain Recommendations;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. QSRP: Efficient Reverse $k-\text{Ranks}$ Query Processing on High-Dimensional Embeddings;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Approximate Reverse Top-k Spatial-Keyword Queries;2023 24th IEEE International Conference on Mobile Data Management (MDM);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3