Optimizing One-time and Continuous Subgraph Queries using Worst-case Optimal Joins

Author:

Mhedhbi Amine1,Kankanamge Chathura1,Salihoglu Semih1

Affiliation:

1. University of Waterloo

Abstract

We study the problem of optimizing one-time and continuous subgraph queries using the new worst-case optimal join plans. Worst-case optimal plans evaluate queries by matching one query vertex at a time using multiway intersections. The core problem in optimizing worst-case optimal plans is to pick an ordering of the query vertices to match. We make two main contributions: 1. A cost-based dynamic programming optimizer for one-time queries that (i) picks efficient query vertex orderings for worst-case optimal plans and (ii) generates hybrid plans that mix traditional binary joins with worst-case optimal style multiway intersections. In addition to our optimizer, we describe an adaptive technique that changes the query vertex orderings of the worst-case optimal subplans during query execution for more efficient query evaluation. The plan space of our one-time optimizer contains plans that are not in the plan spaces based on tree decompositions from prior work. 2. A cost-based greedy optimizer for continuous queries that builds on the delta subgraph query framework. Given a set of continuous queries, our optimizer decomposes these queries into multiple delta subgraph queries, picks a plan for each delta query, and generates a single combined plan that evaluates all of the queries. Our combined plans share computations across operators of the plans for the delta queries if the operators perform the same intersections. To increase the amount of computation shared, we describe an additional optimization that shares partial intersections across operators. Our optimizers use a new cost metric for worst-case optimal plans called intersection-cost . When generating hybrid plans, our dynamic programming optimizer for one-time queries combines intersection-cost with the cost of binary joins. We demonstrate the effectiveness of our plans, adaptive technique, and partial intersection sharing optimization through extensive experiments. Our optimizers are integrated into GraphflowDB.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference72 articles.

1. SPARTex

2. Optimizing multiway joins in a map-reduce environment;Afrati F. N.;TKDE,2011

3. DBToaster

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TC-Match: Fast Time-Constrained Continuous Subgraph Matching;Proceedings of the VLDB Endowment;2024-07

2. In-depth Analysis of Continuous Subgraph Matching in a Common Delta Query Compilation Framework;Proceedings of the ACM on Management of Data;2024-05-29

3. Wings: Efficient Online Multiple Graph Pattern Matching;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. NewSP: A New Search Process for Continuous Subgraph Matching over Dynamic Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Efficient Multi-Query Oriented Continuous Subgraph Matching;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3