Who, Where, When, and What

Author:

Yuan Quan1,Cong Gao1,Zhao Kaiqi1,Ma Zongyang1,Sun Aixin1

Affiliation:

1. Nanyang Technological University, Singapore

Abstract

Micro-blogging services and location-based social networks, such as Twitter, Weibo, and Foursquare, enable users to post short messages with timestamps and geographical annotations. The rich spatial-temporal-semantic information of individuals embedded in these geo-annotated short messages provides exciting opportunity to develop many context-aware applications in ubiquitous computing environments. Example applications include contextual recommendation and contextual search. To obtain accurate recommendations and most relevant search results, it is important to capture users’ contextual information (e.g., time and location) and to understand users’ topical interests and intentions. While time and location can be readily captured by smartphones, understanding user’s interests and intentions calls for effective methods in modeling user mobility behavior. Here, user mobility refers to who visits which place at what time for what activity . That is, user mobility behavior modeling must consider user (Who), spatial (Where), temporal (When), and activity (What) aspects. Unfortunately, no previous studies on user mobility behavior modeling have considered all of the four aspects jointly, which have complex interdependencies. In our preliminary study, we propose the first solution named W 4 (short for Who, Where, When, and What) to discover user mobility behavior from the four aspects. In this article, we further enhance W 4 and propose a nonparametric Bayesian model named EW 4 (short for Enhanced W 4 ). EW 4 requires no parameter tuning and achieves better results over W 4 in our experiments. Given some of the four aspects of a user (e.g., time), our model is able to infer information of the other aspects (e.g., location and topical words). Thus, our model has a variety of context-aware applications, particularly in contextual search and recommendation. Experimental results on two real-world datasets show that the proposed model is effective in discovering users’ spatial-temporal topics. The model also significantly outperforms state-of-the-art baselines for various tasks including location prediction for tweets and requirement-aware location recommendation.

Funder

Microsoft Research Asia

Institute for Media Innovation, Nanyang Technological University, Singapore

Singapore MOE AcRF Tier 2

Singapore MOE AcRF Tier 1

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3