Fighting fire with fire

Author:

Biswas Susmit1,Tiwari Mohit2,Sherwood Timothy2,Theogarajan Luke2,Chong Frederic T.2

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, CA, USA

2. University of California, Santa Barbara, Santa Barbara, CA, USA

Abstract

Local thermal hot-spots in microprocessors lead to worst-case provisioning of global cooling resources, especially in large-scale systems where cooling power can be 50~100% of IT power. Further, the efficiency of cooling solutions degrade non-linearly with supply temperature. Recent advances in active cooling techniques have shown on-chip thermoelectric coolers (TECs) to be very efficient at selectively eliminating small hot-spots. Applying current to a superlattice TEC-film that is deposited between silicon and the heat spreader results in a Peltier effect, which spreads the heat and lowers the temperature of the hot-spot significantly and improves chip reliability . In this paper, we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provisioned for a better worst case temperature leading to substantial savings in cooling power. In order to quantify the potential power savings from using TECs in data center servers, we present a detailed power model that integrates on-chip dynamic and leakage power sour-ces, heat diffusion through the entire chip, TEC and global cooler efficiencies, and all their mutual interactions. Our multi-scale analysis shows that, for a typical data center, TECs allow global coolers to operate at higher temperatures without degrading chip lifetime, and thus save ~27% cooling power on average while providing the same processor reliability as a data center running at 288K.

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. Comp turns up the heat on energy conservation. https://newsline.llnl.gov/_rev02/articles/2009/oct/10.02.09-energy.php. Comp turns up the heat on energy conservation. https://newsline.llnl.gov/_rev02/articles/2009/oct/10.02.09-energy.php.

2. The International Technology Roadmap for Semiconductors. http://www.itrs.net/. The International Technology Roadmap for Semiconductors. http://www.itrs.net/.

3. On-Chip Thermal Management and Hot-Spot Remediation

4. The Case for Energy-Proportional Computing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3