Run-time modeling and estimation of operating system power consumption

Author:

Li Tao1,John Lizy Kurian1

Affiliation:

1. University of Texas at Austin, Austin, TX

Abstract

The increasing constraints on power consumption in many computing systems point to the need for power modeling and estimation for all components of a system. The Operating System (OS) constitutes a major software component and dissipates a significant portion of total power in many modern application executions. Therefore, modeling OS power is imperative for accurate software power evaluation, as well as power management (e.g. dynamic thermal control and equal energy scheduling) in the light of OS-intensive workloads. This paper characterizes the power behavior of a commercial OS across a wide spectrum of applications to understand OS energy profiles and then proposes various models to cost-effectively estimate its run-time energy dissipation. The proposed models rely on a few simple parameters and have various degrees of complexity and accuracy. Experiments show that compared with cycle-accurate full-system simulation, the model can predict cumulative OS energy to within 1% accuracy for a set of benchmark programs evaluated on a high-end superscalar microprocessor. When applied to track run-time OS energy profiles, the proposed routine level OS power model offers superior accuracy than a simpler, flat OS power model, yielding per-routine estimation error of less than 6%. The most striking observation is the strong correlation between power consumption and the instructions per cycle (IPC) during OS routine executions. Since tools and methodology to measure IPC exist on modern microprocessors, the proposed models can estimate OS power for run-time dynamic thermal and energy management.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference34 articles.

1. The performance and energy consumption of three embedded real-time operating systems

2. The benefits of event

3. R. Berrendorf and B. Mohr PCL - The Performance Counter Library Version 2. 2 http://www.fz- juelich.de/zam/PCL/ Jan. 2003. R. Berrendorf and B. Mohr PCL - The Performance Counter Library Version 2. 2 http://www.fz- juelich.de/zam/PCL/ Jan. 2003.

4. Wattch

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3