Portable run-time type description for conventional compilers

Author:

Kakkad Sheetal V.1,Johnstone Mark S.1,Wilson Paul R.1

Affiliation:

1. Department of Computer Sciences, The University of Texas at Austin and Somerset Design Center, Motorola, Inc., Austin TX

Abstract

Many useful programming language extensions and system support libraries require knowledge of the locations of fields within objects at run time. Examples include orthogonal persistent object stores, precise garbage collectors, data structure picklers, and parameter marshaling schemes.For clean and efficient implementation as libraries, these systems require run-time knowledge of in-memory layouts of data objects, which is unavailable in most traditionally compiled and linked programming languages, such as C, C++, and Ada. Even the recently standardized run-time type identification (RTTI) feature in C++ is insufficient, because it describes only language-level features of the type hierarchy and not the compiler-dependent object layout decisions.We present a facility for run-time type description , or RTTD, which extracts low-level layout information from debugging information generated by conventional compilers, and makes it available to user programs. We believe this to be the simplest and most portable approach to run-time type description, requiring no changes to existing compilers. In this paper, we describe the basic strategies and present details of our implementation for C++. We also sketch some extensions that we have implemented, including special treatment of C++'s virtual function table pointers to match persistent or foreign data objects with the actual code in a particular application.Our implementation of run-time type description is freely available. It is in regular use with multiple operating systems and compilers, in both free and commercial products, including a high-performance persistent object storage system for C++ and a real-time garbage collector.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3