Congestion control in IP/TCP internetworks

Author:

Nagle John1

Affiliation:

1. Ford Aerospace and Communications Corporation, Palo Alto, California

Abstract

Congestion control is a recognized problem in complex networks. We have discovered that the Department of Defense's Internet Protocol (IP), a pure datagram protocol, and Transmission Control Protocol (TCP), a transport layer protocol, when used together, are subject to unusual congestion problems caused by interactions between the transport and datagram layers. In particular, IP gateways are vulnerable to a phenomenon we call congestion collapse, especially when such gateways connect networks of widely different bandwidth. We have developed solutions that prevent congestion collapse.These problems are not generally recognized because these protocols are used most often on networks built on top of ARPANET IMP technology. ARPANET IMP based networks traditionally have uniform bandwidth, identical switching nodes, and are sized with substantial excess capacity. This excess capacity, and the ability of the IMP system to throttle the transmissions of hosts has for most IP/TCP hosts and networks, been adequate to handle congestion. With the recent split of the ARPANET into two interconnected networks and the growth of other networks with differing properties connected to the ARPANET, however, reliance on the benign properties of the IMP system is no longer enough to allow hosts to communicate rapidly and reliably. Improved handling of congestion is now mandatory for successful network operation under load.Ford Aerospace and Communications Corporation, and its parent company, Ford Motor Company, operate the only private IP/TCP long-haul network in existence today. This network connects six facilities (one in Michigan, two in California, one in Colorado, one in Texas, and one in England) some with extensive local networks. This net is cross-tied to the ARPANET but uses its own long-haul circuits; traffic between Ford facilities flows over private leased circuits, including a leased transatlantic satellite connection. All switching nodes are pure IP datagram switches with no node-to-node flow control, and all hosts run software either written or heavily modified by Ford or Ford Aerospace. Bandwidth of links in this network varies widely, from 1200 to 10,000,000 bits per second. In general, we have not been able to afford the luxury of excess long-haul bandwidth that the ARPANET possesses, and our long-haul links are heavily loaded during peak periods. Transit times of several seconds are thus common in our network.Because of our pure datagram orientation, heavy loading, and wide variation in bandwidth, we have had to solve problems that the ARPANET/MILNET community is just beginning to recognize. Our network is sensitive to suboptimal behavior by host TCP implementations, both on and off our own net. We have devoted considerable effort to examining TCP behavior under various conditions, and have solved some widely prevalent problems with TCP. We present here two problems and their solutions. Many TCP implementations have these problems; if throughput is worse through an ARPANET/MILNET gateway for a given TCP implementation than throughput across a single net, there is a high probability that the TCP implementation has one or both of these problems.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3