Toward Deep Learning Based Access Control
Author:
Affiliation:
1. University of Texas at San Antonio, San Antonio, TX, USA
2. University of Pittsburgh & UPMC Hillman Cancer Center, Pittsburgh, PA, USA
Funder
NSF Division of Computer and Network Systems (CNS)
National Science Foundation (NSF)
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3508398.3511497
Reference77 articles.
1. Manar Alohaly Hassan Takabi and Eduardo Blanco. 2018. A deep learning approach for extracting attributes of ABAC policies. In SACMAT. ACM. Manar Alohaly Hassan Takabi and Eduardo Blanco. 2018. A deep learning approach for extracting attributes of ABAC policies. In SACMAT. ACM.
2. Kaggle Amazon. 2013. Amazon Employee Access Challenge in Kaggle. https://www.kaggle.com/c/amazon-employee-access-challenge/ Kaggle Amazon. 2013. Amazon Employee Access Challenge in Kaggle. https://www.kaggle.com/c/amazon-employee-access-challenge/
3. UCI Amazon. 2011. Amazon Access Samples Data Set. http://archive.ics.uci.edu/ml/datasets/Amazon UCI Amazon. 2011. Amazon Access Samples Data Set. http://archive.ics.uci.edu/ml/datasets/Amazon
4. Access Access
5. Samples Samples
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Beyond Traditional Methods: Deep Learning with Data Augmentation for Robust Access Control;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29
2. The $$\mathrm {ACAC_{D}}$$ model for mutable activity control and chain of dependencies in smart and connected systems;International Journal of Information Security;2024-07-20
3. ZTCloudGuard: Zero Trust Context-Aware Access Management Framework to Avoid Medical Errors in the Era of Generative AI and Cloud-Based Health Information Ecosystems;AI;2024-07-08
4. BlueSky: How to Raise a Robot - A Case for Neuro-Symbolic AI in Constrained Task Planning for Humanoid Assistive Robots;Proceedings of the 29th ACM Symposium on Access Control Models and Technologies;2024-06-24
5. Environment Aware Deep Learning Based Access Control Model;Proceedings of the 2024 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems;2024-06-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3