Precise Correlation Extraction for IoT Fault Detection With Concurrent Activities

Author:

Lee Gyeongmin1,Kim Bongjun2,Song Seungbin3,Kim Changsu4,Kim Jong4,Kim Hanjun3

Affiliation:

1. Samsung Advanced Institute of Technology, Republic of Korea

2. POSTECH, Republic of Korea, Pohang, Gyeongbuk

3. Yonsei University, Seoul, Republic of Korea

4. POSTECH, Pohang, Gyeongbuk, Republic of Korea

Abstract

In the Internet of Things (IoT) environment, detecting a faulty device is crucial to guarantee the reliable execution of IoT services. To detect a faulty device, existing schemes trace a series of events among IoT devices within a certain time window, extract correlations among them, and find a faulty device that violates the correlations. However, if a few users share the same IoT environment, since their concurrent activities make non-correlated devices react together in the same time window, the existing schemes fail to detect a faulty device without differentiating the concurrent activities. To correctly detect a faulty device in the multiple concurrent activities, this work proposes a new precise correlation extraction scheme, called PCoExtractor. Instead of using a time window, PCoExtractor continuously traces the events, removes unrelated device statuses that inconsistently react for the same activity, and constructs fine-grained correlations. Moreover, to increase the detection precision, this work newly defines a fine-grained correlation representation that reflects not only sensor values and functionalities of actuators but also their transitions and program states such as contexts. Compared to existing schemes, PCoExtractor detects and identifies 40.06% more faults for 4 IoT services with concurrent activities of 12 users while reducing 80.3% of detection and identification times.

Funder

Institute of Information and Communication Technology Planning and Evaluation

Ministry of Science and ICT

Samsung Electronics

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3