Nonnegative Matrix Factorization Based on Node Centrality for Community Detection

Author:

Su Sixing1ORCID,Guan Jiewen1ORCID,Chen Bilian1ORCID,Huang Xin2ORCID

Affiliation:

1. Department of Automation, Xiamen University, China and Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision-Making, Xiamen, China

2. Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

Abstract

Community detection is an important topic in network analysis, and recently many community detection methods have been developed on top of the Nonnegative Matrix Factorization (NMF) technique. Most NMF-based community detection methods only utilize the first-order proximity information in the adjacency matrix, which has some limitations. Besides, many NMF-based community detection methods involve sparse regularizations to promote clearer community memberships. However, in most of these regularizations, different nodes are treated equally, which seems unreasonable. To dismiss the above limitations, this article proposes a community detection method based on node centrality under the framework of NMF. Specifically, we design a new similarity measure which considers the proximity of higher-order neighbors to form a more informative graph regularization mechanism, so as to better refine the detected communities. Besides, we introduce the node centrality and Gini impurity to measure the importance of nodes and sparseness of the community memberships, respectively. Then, we propose a novel sparse regularization mechanism which forces nodes with higher node centrality to have smaller Gini impurity. Extensive experimental results on a variety of real-world networks show the superior performance of the proposed method over thirteen state-of-the-art methods.

Funder

Youth Innovation Fund of Xiamen

National Natural Science Foundation of China

Hong Kong RGC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference52 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3