GNN-based Advanced Feature Integration for ICS Anomaly Detection

Author:

L(y)u Shuaiyi1ORCID,Wang Kai2ORCID,Wei Yuliang2ORCID,Liu Hongri2ORCID,Fan Qilin3ORCID,Wang Bailing1ORCID

Affiliation:

1. Harbin Institute of Technology, China

2. Harbin Institute of Technology, Weihai, China

3. Chongqing University, China

Abstract

Recent adversaries targeting the Industrial Control Systems (ICSs) have started exploiting their sophisticated inherent contextual semantics such as the data associativity among heterogeneous field devices. In light of the subtlety rendered in these semantics, anomalies triggered by such interactions tend to be extremely covert, hence giving rise to extensive challenges in their detection. Driven by the critical demands of securing ICS processes, a Graph-Neural-Network (GNN) based method is presented to tackle these subtle hostilities by leveraging an ICS’s advanced contextual features refined from a universal perspective, rather than exclusively following GNN’s conventional local aggregation paradigm. Specifically, we design and implement the Graph Sample-and-Integrate Network (GSIN), a general chained framework performing node-level anomaly detection via advanced feature integration, which combines a node’s local awareness with the graph’s prominent global properties extracted via process-oriented pooling. The proposed GSIN is evaluated on multiple well-known datasets with different kinds of integration configurations, and results demonstrate its superiority consistently on not only anomaly detection performance (e.g., F1 score and AUPRC) but also runtime efficiency over recent representative baselines.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Double First-Class Scientific Research Funds of HIT

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3