Efficient relaxed search in hierarchically clustered sequence datasets

Author:

Bader Kai C.1,Atallah Mikhail J.2,Grothoff Christian1

Affiliation:

1. Technische Universität München, Germany

2. Purdue University, IN

Abstract

This article presents a new algorithm for finding oligonucleotide signatures that are specific and sensitive for organisms or groups of organisms in large-scale sequence datasets. We assume that the organisms have been organized in a hierarchy, for example, a phylogenetic tree. The resulting signatures, binding sites for primers and probes, match the maximum possible number of organisms in the target group while having at most k matches outside of the target group. The key step in the algorithm is the use of the lowest common ancestor (LCA) to search the organism hierarchy; this allows the combinatorial problem in almost linear time (empirically observed) to be solved. The presented algorithm improves performance by several orders of magnitude in terms of both memory consumption and runtime when compared to the best-known previous algorithms while giving identical, exact solutions. This article gives a formal description of the algorithm, discusses details of our concrete, publicly available implementation, and presents the results from our performance evaluation.

Funder

Qatar Foundation

Division of Computer and Network Systems

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3