An SDP approach to multi-level crossing minimization

Author:

Chimani Markus1,Hungerländer Philipp2,Jünger Michael3,Mutzel Petra4

Affiliation:

1. Friedrich-Schiller-University of Jena, Germany

2. Alpen-Adria Universität Klagenfurt, Austria

3. University of Cologne, Germany

4. Technische Universität Dortmund, Germany

Abstract

We present an approach based on semidefinite programs (SDP) to tackle the multi-level crossing minimization problem. We are given a layered graph (i.e., the graph's vertices are assigned to multiple parallel levels) and are asked for an ordering of the nodes on each level such that, when drawing the graph with straight lines, the resulting number of crossings is minimized. Solving this step is crucial in what is probably the most widely used graph drawing scheme, the Sugiyama framework. The problem has received a lot of attention in both the fields of heuristics and exact methods. For a long time, integer linear programming (ILP) approaches were the only exact algorithms applicable, at least for small graphs. Recently, SDP formulations for the special case of two levels were proposed and dominated the ILP for dense instances. In this article, we present a new SDP formulation for the general multi-level version that, for two levels, is even stronger than the aforementioned specialized SDP. As a by-product, we also obtain an SDP-based heuristic, which in practice always gives (near-)optimal solutions. We conduct a large set of experiments, both on randomized and on real-world instances, and compare our approach to a state-of-the-art ILP-based branch-and-cut implementation. The SDP clearly dominates for denser graphs, while the ILP approach is usually faster for sparse instances. However, even for such sparse graphs, the SDP solves more instances to optimality than the ILP. In fact, there is no single instance that the ILP solved that the SDP did not. Overall, our experiments reveal that, for sparse graphs, one should usually try to find an optimal solution with the ILP first. If this approach does not solve the instance to optimality within reasonable time, the SDP still has a good chance to do so. Being able to solve larger real-world instances than reported before, we are also able to evaluate heuristics for this problem. In this article, we do so for the traditional barycenter-heuristic (showing that it leaves a large gap to the true optimum) and the state-of-the-art upward-planarization method (showing that it is usually close to the optimum).

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crossing Minimal Edge‐Constrained Layout Planning using Benders Decomposition;Production and Operations Management;2021-05-26

2. Exact Approaches to Multilevel Vertical Orderings;INFORMS Journal on Computing;2013-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3