TLPGNN: A Lightweight Two-level Parallelism Paradigm for Graph Neural Network Computation on Single and Multiple GPUs

Author:

Fu Qiang1,Ji Yuede2,Rolinger Thomas3,Huang H. Howie4

Affiliation:

1. Advanced Micro Devices Inc Austin, Austin, USA

2. Computer Science and Engineering, University of North Texas, Denton, USA

3. NVIDIA, Austin, USA

4. The George Washington University, Washington, USA

Abstract

Graph Neural Networks (GNNs) are an emerging class of deep learning models specifically designed for graph-structured data. They have been effectively employed in a variety of real-world applications, including recommendation systems, drug development, and analysis of social networks. The GNN computation includes regular neural network operations and general graph convolution operations, which take most of the total computation time. Though several recent works have been proposed to accelerate the computation for GNNs, they face the limitations of heavy pre-processing, low efficiency atomic operations, and unnecessary kernel launches. In this article, we design TLPGNN , a lightweight two-level parallelism paradigm for GNN computation. First, we conduct a systematic analysis of the hardware resource usage of GNN workloads to understand the characteristics of GNN workloads deeply. With the insightful observations, we then divide the GNN computation into two levels, i.e., vertex parallelism for the first level and feature parallelism for the second. Next, we employ a novel hybrid dynamic workload assignment to address the imbalanced workload distribution. Furthermore, we fuse the kernels to reduce the number of kernel launches and cache the frequently accessed data into registers to avoid unnecessary memory traffic. To scale TLPGNN to multi-GPU environments, we propose an edge-aware row-wise 1-D partition method to ensure a balanced workload distribution across different GPU devices. Experimental results on various benchmark datasets demonstrate the superiority of our approach, achieving substantial performance improvement over state-of-the-art GNN computation systems, including Deep Graph Library (DGL), GNNAdvisor, and FeatGraph, with speedups of 6.1×, 7.7×, and 3.0×, respectively, on average. Evaluations of multiple-GPU TLPGNN also demonstrate that our solution achieves both linear scalability and a well-balanced workload distribution.

Publisher

Association for Computing Machinery (ACM)

Reference59 articles.

1. Martín Abadi Paul Barham Jianmin Chen Zhifeng Chen Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Geoffrey Irving Michael Isard Manjunath Kudlur Josh Levenberg Rajat Monga Sherry Moore Derek G. Murray Benoit Steiner Paul Tucker Vijay Vasudevan Pete Warden Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). USENIX Association Savannah GA 265–283.

2. Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis

3. Siddhant Arora. 2020. A survey on graph neural networks for knowledge graph completion. arXiv preprint arXiv:2007.12374 (2020).

4. Locality Exists in Graph Processing: Workload Characterization on an Ivy Bridge Server

5. Alaa Bessadok Mohamed Ali Mahjoub and Islem Rekik. 2021. Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3