HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification

Author:

Moore Alex1ORCID,Orset Bastien1ORCID,Yassaee Arrash2ORCID,Irving Benjamin1ORCID,Morelli Davide3ORCID

Affiliation:

1. Huma Therapeutics Ltd, UK

2. Huma Therapeutics Ltd, UK and Imperial College, UK

3. Huma Therapeutics Ltd, UK and University of Oxford, UK

Abstract

Risk stratification is an essential tool in the fight against many diseases, including chronic kidney disease. Recent work has focused on applying techniques from machine learning and leveraging the information contained in a patient’s electronic health record (EHR). Irregular intervals between data entries and the large number of variables tracked in EHR datasets can make them challenging to work with. Many of the difficulties associated with these datasets can be overcome by using large language models, such as bidirectional encoder representations from transformers (BERT). Previous attempts to apply BERT to EHR for risk stratification have shown promise. In this work we propose HERBERT, a novel application of BERT to EHR data. We identify two key areas where BERT models must be modified to adapt them to EHR data, namely: the embedding layer and the pretraining task. We show how changes to these can lead to improved performance, relative to the previous state of the art. We evaluate our model by predicting the transition of chronic kidney disease patients to end stage renal disease. The strong performance of our model justifies our architectural changes and suggests that large language models could play an important role in future renal risk stratification.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3