An Adaptive Application Framework with Customizable Quality Metrics

Author:

Liu Liu1,Isaacman Sibren2,Kremer Ulrich1

Affiliation:

1. Rutgers University, Piscataway, NJ, USA

2. Loyola University Maryland, Baltimore, MD, USA

Abstract

Many embedded environments require applications to produce outcomes under different, potentially changing, resource constraints. Relaxing application semantics through approximations enables trading off resource usage for outcome quality. Although quality is a highly subjective notion, previous work assumes given, fixed low-level quality metrics that often lack a strong correlation to a user’s higher-level quality experience. Users may also change their minds with respect to their quality expectations depending on the resource budgets they are willing to dedicate to an execution. This motivates the need for an adaptive application framework where users provide execution budgets and a customized quality notion. This article presents a novel adaptive program graph representation that enables user-level, customizable quality based on basic quality aspects defined by application developers. Developers also define application configuration spaces, with possible customization to eliminate undesirable configurations. At runtime, the graph enables the dynamic selection of the configuration with maximal customized quality within the user-provided resource budget. An adaptive application framework based on our novel graph representation has been implemented on Android and Linux platforms and evaluated on eight benchmark programs, four with fully customizable quality. Using custom quality instead of the default quality, users may improve their subjective quality experience value by up to 3.59×, with 1.76× on average under different resource constraints. Developers are able to exploit their application structure knowledge to define configuration spaces that are on average 68.7% smaller as compared to existing, structure-oblivious approaches. The overhead of dynamic reconfiguration averages less than 1.84% of the overall application execution time.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Application Centric Carbon Emission Management;Proceedings of the 2nd Workshop on Sustainable Computer Systems;2023-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3